PHARMACODYNAMICS

Investigation of the predictive validity of laser-EPs in normal, UVB-inflamed and capsaicin-irritated skin with four analgesic compounds in healthy volunteers

Correspondence Dr. med. Klaus Schaffler, MD, HPR Human Pharmacodynamic Research, Managing and Medical Director, HPR Dr Schaffler GmbH, Heisenbergbogen 1, D-85609 Aschheim-Dornach/Munich, Germany. Tel.: +49 (0)89 993220; Fax: +49 (0)89 9932 2299; E-mail: k.schaffler@hpr-cro.com

Received 7 August 2016; Revised 24 January 2017; Accepted 27 January 2017

Klaus Schaffler¹, Laurent B. Nicolas², Andreas Borta², Tobias Brand², Peter Reitmeir¹, Robert Roebling³ and Joachim Scholpp²

¹HPR, Human Pharmacodynamic Research GmbH, Munich, Germany, ²Translational Medicine and Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany, and ³Medicine, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany

Keywords laser-evoked potentials (LEPs), nociceptive/hyperalgesic/analgesic efficacy, phase I, UVB- and capsaicin-irritated skin

AIMS
The aim of the present study was to assess the predictivity of laser-(radiant-heat)-evoked potentials (LEPs) from the vertex electroencephalogram, using an algesimetric procedure, testing the anti-nociceptive/anti-hyperalgesic effects of single oral doses of four marketed analgesics (of different compound classes) vs. placebo, in healthy volunteers with three skin types.

METHODS
This was a randomized, placebo-controlled, single-blind, five-way-crossover trial. Twenty-five healthy male/female Caucasians were included (receiving celecoxib 200 mg, pregabalin 150 mg, duloxetine 60 mg, lacosamide 100 mg or placebo) in a Williams design, with CO₂ laser-induced painful stimuli to normal, ultraviolet (UV) B-inflamed and capsaicin-irritated skin. LEPs and visual analogue scale ratings were taken at baseline and hourly for 6 h postdose from all three skin types.

RESULTS
In normal skin, the averaged postdose LEP peak-to-peak-(PtP)-amplitudes were reduced by pregabalin (−2.68 μV; 95% confidence interval (CI) −4.16, 1.19) and duloxetine (−1.73 μV; 95% CI −3.21, −0.26) but not by lacosamide and celecoxib vs. placebo. On UVB-irradiated skin, reflecting inflammatory pain, celecoxib induced a pronounced reduction in LEP PtP amplitudes vs. placebo (−6.2 μV; 95% CI −7.88, −4.51), with a smaller reduction by duloxetine (−4.54 μV; 95% CI −6.21, −2.87) and pregabalin (−3.72 μV; 95% CI −5.40, −2.04), whereas lacosamide was inactive. LEP PtP amplitudes on capsaicin-irritated skin, reflecting peripheral/spinal sensitization, as in neuropathic pain, were reduced by pregabalin (−3.78 μV; 95% CI −5.31, −2.25) and duloxetine (−2.32 μV; 95% CI −3.82, −0.82) but not by celecoxib or lacosamide vs. placebo, which was in agreement with known clinical profiles. Overall, PtP amplitude reductions were in agreement with subjective ratings.

CONCLUSIONS
LEP algesimetry is sensitive to analgesics with different modes of action and may enable the effects of novel analgesics to be assessed during early clinical development.

© 2017 The British Pharmacological Society DOI:10.1111/bcp.13247
WHAT IS ALREADY KNOWN ABOUT THIS SUBJECT

• Diverse compound classes (other than nonsteroidal anti-inflammatory drugs and narcotics) have demonstrated efficacy in animal, human phase I and clinical pain studies.
• Laser- (radiant heat) evoked potentials (LEPs) and pain visual analogue scales, approved in previous studies, have been used specifically to evaluate the anti-nociceptive/hyperalgesic effects of four marketed compounds (of different classes) vs. placebo in normal, ultraviolet B-inflamed and capsaicin-irritated skin.

WHAT THIS STUDY ADDS

• The present results using the LEP model indicated that it is feasible to differentiate between the efficacies of diverse compound classes – with regard to thermal hyperalgesia – in a single-dose paradigm.
• The algesimetric model showed reproducibility and validity, and correlated with clinical outcomes.
• The suitability and predictivity of the model was confirmed in small numbers of normal healthy subjects.

Tables of Links

<table>
<thead>
<tr>
<th>TARGETS</th>
<th>LIGANDS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enzymes [2]</td>
<td>Celecoxib</td>
</tr>
<tr>
<td>COX-2</td>
<td>Duloxetine</td>
</tr>
<tr>
<td>Transporters [3]</td>
<td>Lacosamide</td>
</tr>
<tr>
<td>NET</td>
<td>Pregabalin</td>
</tr>
<tr>
<td>SERT</td>
<td></td>
</tr>
</tbody>
</table>

These Tables list key protein targets and ligands in this article that are hyperlinked to corresponding entries in http://www.guidetopharmacology.org, the common portal for data from the IUPHAR/BPS Guide to PHARMACOLOGY [1], and are permanently archived in the Concise Guide to PHARMACOLOGY 2015/16 [2–4].

Introduction

Chronic pain, a frequent pathological state associated with a decreased quality of life, reduces functionality, causes temporary or permanent unfitness for work and represents a significant public health burden. Unfortunately, although there is a high unmet medical need for novel effective pain treatments, the development of new analgesic compounds remains a major challenge for the pharmaceutical industry. Indeed, the extrapolation of the analgesic effects obtained with novel pharmacotherapies in evoked pain animal models to complex human pain states has so far been associated with a high rate of failure in relatively large and costly patient trials [5, 6].

In order to assess the analgesic potential of a new drug candidate in early clinical development (ECD), to inform subsequent clinical study designs and to support decision making before entering into large and costly phase II and III studies, several translational experimental human pain models have been proposed. In general, these models build on the standardized activation of nociceptive pathways in healthy volunteers or patients, combined with quantitative and objective recordings of the evoked pain responses [7]. For example, it has been shown that specific CO₂ laser stimulations can be repeatedly applied to normal [8, 9] and hyperalgesic (ultraviolet (UV)-irradiated/inflamed- and capsaicin-irritated skin) [8–12] skin types in healthy volunteers to generate laser-evoked potentials (LEPs), recorded from the vertex electroencephalogram (EEG) by filtering and averaging triggered responses.

LEPs from normal skin may enable the assessment of stable intradiurnal perception/processing conditions and/or sole antinociceptive properties of compounds [8, 9]. LEPs from UVB-irradiated skin primarily mimic acute, post-traumatic and/or postoperative/inflammatory pain (mainly peripheral hyperalgesia) [8, 9]. Finally, LEPs from capsaicin-irritated skin are thought to be useful for investigating conditions resembling neuropathic pain, owing to ongoing nociceptive input at the spinal level (inducing mixed peripheral–spinal/central hyperalgesia) [8, 10, 13, 14].

It has been shown that various classes of drugs with antinociceptive and antihyperalgesic properties – depending on their mechanisms of action – reduce the amplitude of LEP EEG peak-to-peak (PtP) components, when compared with placebo, in healthy volunteers [8–11, 15, 16]. In addition, the results from a meta-analysis have shown that the PtP amplitude reductions obtained with marketed analgesics correlated well with scores obtained using subjective self-reporting pain rating scales such as the visual analogue scale (VAS) [8]. This further suggests the potential usefulness of this objective procedure in the assessment of candidate analgesics with new modes of action (MoA) during ECD [17]. Furthermore, the use of validated contact-free thermonociceptive laser stimulation technology in algesimetry is supported by the European Federation of Neurological Societies (EFNS) guidelines, describing the use of laser technology as a reliable tool for assessing nociceptive pathways in humans [16, 18].
The present study was designed to assess further the usefulness of the LEP paradigm in ECD. To that end, the effects of four marketed analgesics from different compound classes (celecoxib, pregabalin, duloxetine and lacosamide), with well-established clinical profiles, were tested vs. placebo in a single-dose paradigm on different skin types (normal, UV-irradiated/inflamed, and capsaicin-irritated skin) in the same cohort of healthy human volunteers.

Methods

Study participants
The protocol, subject information and consent form were approved by the relevant ethics committee (Ethics Committee of the Bavarian Chamber of Physicians (BLÄK), Munich, Germany – EC-No. 12048) and by the German competent authority (German Federal Health Authority (BfArM), Bonn, Germany – BfArM-No. 4038215). The study was conducted at a single site (Human Pharmacodynamic Research GmbH, Munich, Germany) in accordance with the principles of the Declaration of Helsinki and its current amendments, the federal clinical trial directives (based on German regulations, German Drug Law (AMG), the International Conference on Harmonization guidelines CPMP/ICH/135/95) and the guidelines for good clinical practice. The trial was registered under the EudraCT number 2012-003202-26.

Twenty-five healthy subjects (nine female and 16 male), aged between 20 and 52 years [mean age 35.8 years, standard deviation (SD) 9.1, median 34.0; mean body mass index (BMI) 24.5, SD 2.7, median 24.7] participated in the study. Following written informed consent, the subjects were enrolled based on inclusion and exclusion criteria consisting of prestudy physical examination, medical history, electrocardiogram (ECG) recording, vital signs and clinical laboratory tests. Suspected allergy to the reference drugs or placebo components, hypersensitivity to UVB (e.g. photoallergy), acne, widespread tattoos, scars or any pathogenic dermatological condition at the site of exposure to the laser, capsaicin and UVB were among the exclusion criteria.

Subjects who did not consent to abstain from using topical drugs or cosmetics at the site of exposure to the laser, capsaicin and UVB, and from sunbathing from 2 weeks prior to the first study drug administration until the end of treatment were not allowed to participate in the study. Only subjects with skin types II–IV, according to Fitzpatrick, were used (covering about 90% of the skin types of the European population).

For female subjects who were not postmenopausal or sexually abstenor, or whose partners were not vasectomized, inclusion criteria included the use of physical contraceptive barriers (e.g., condoms) in addition to adequate hormonal contraceptives. Female subjects who were pregnant or breastfeeding were excluded.

Study design and treatments
This was a randomized, single-blind, single-centre, exploratory clinical study in which each subject received single doses of analgesics of different classes [i.e. celecoxib (200 mg Celebrex®), pregabalin (150 mg Lyrica®), duloxetine (60 mg Cymbalta®) and lacosamide (100 mg Vimpat®)] or placebo in a five-way (intraindividual) crossover design. Analgesics were prepacked in opaque individual bottles and labelled with the subject randomization number and treatment period, in accordance with the randomization scheme. An external independent pharmacy was responsible for the packaging and labelling of trial medications. Doses of analgesics were selected based on recommended standard and efficacious clinical doses.

Schedule of study assessments
Screening took place between 21 and 2 days before first study drug administration. Following screening, eligible subjects were randomized to one of the 10 possible treatment sequences, determined using a Williams design [19]. It was planned that each subject attended five treatment periods, separated by a washout period of 7 days between each drug administration. The end-of-trial visit took place immediately after completion of the final treatment period. The total duration of the study was approximately 6–7 weeks, including screening.

On the assessment day for each treatment period, the study drug was administered directly from the prepared vials into the oral cavity (to avoid presenting any visual cues for the subject and investigator, to ensure blinding) together with 150 ml of tap water after an overnight fasting period of 10 h (controlled by a predose capillary blood glucose check in the morning) and then 3 h after a small standard breakfast. On this day, a small standard snack and a standard meal were served immediately after completion of the 2 h and 4 h postdose LEP andVAS postlaser pain assessments.

Preparatory procedures at screening
At screening, six different skin squares (1 cm × 1 cm each) from the back of each subject were exposed to six ascending doses of UVB [using invisible range 290–320 nm; UVB narrow-band Dermalight® 80, with an emission peak at 311 nm (Dr Hönle Medizintechnik, GmbH, Kaufering, Germany)] in order to determine the minimal erythema dose (MED) – that is, the minimal UVB dose which produces a clearly discernible erythema. After a development time of 6–8 h, the visual identification of the square area showing the first clearly discernible rectangular erythema was used to determine the individual MED (i.e. resulting in individual exposure times of approximately 2–6 min for the later two-fold MED application on the main assessment days, depending on the individual skin characteristics).

In addition, an individual (thermonociceptive) CO2 laser pain threshold (LPT) – induced by Synrad Infrared Gas Laser Model E48–1/−10 W (Synrad Inc., North Bothell, WA, USA) (laser emission in the far infra-red spectrum at 10200 to 10600 nm, beam diameter 3.5 mm) – was determined by the application of a slowly increasing laser beam intensity to the normal skin of each participant until they felt a pin-prick sensation; the intensity was finally adjusted to 50% higher than this threshold. Once determined at screening in normal skin, the intensity of the laser stimuli and the UV dose were both kept constant over the entire study period for each individual.
Skin sensitization and laser-induced thermonociception procedures during treatment periods

On the morning of the main assessment day for each treatment period, a twofold individual MED was applied (invisible range 310–315 nm; UVB narrow-band Dermalight® 80, with an emission peak at 311 nm) to a defined area of the skin on the back (5 × 5 cm each), 2 h before study drug administration. After UVB exposure, capsaicin (500 μl as a standardized 1% alcoholic extract; Extrakt Chemie, Stadthagen, Germany) was applied as a topical occlusive treatment for 30 min to a contralateral circular skin area (5.5 cm in diameter) in each subject 1 h 50 min before each drug administration. For each treatment period, skin areas (untreated; also referred to as normal, UVB inflamed and capsaicin irritated) were randomly switched, using different dermatomes and contralateral sites, to avoid a possible change in skin sensitivity by re-exposure, as a result of adaptation or overstimulation.

Thermonociception was induced by the application of CO₂ laser stimuli to normal (untreated) and sensitized skin (UVB inflamed or capsaicin irritated), at predefined time points, before (for baseline assessments) and after treatments. At each time point, the normal skin evaluation was always performed first. Laser stimuli to normal skin were also set at −2 h 30 min prior to drug administration as a warm-up (not evaluated). Stimuli to UVB-inflamed or capsaicin-irritated skin were induced at −30 min and −5 min, serving as ‘wind-up’ sessions for hyperalgesia development (‘kindling’); the outcome was not evaluated. Baseline measurements for the LEPs and VAS postlaser pain were determined before dosing at −2 h 5 min and −1 h 20 min as baseline for UVB- (on untreated skin) and capsaicin-treated skin, respectively. Further LEPs and VAS postlaser pain assessments from UVB- and capsaicin-treated skin were performed following study drug administration (0:00 h) at predefined time points (1 h, 2 h, 3 h, 4 h, 5 h and 6 h).

Effects of laser-induced thermonociception on vertex EEG and pain perception recordings

At selected time points, thermonociception – induced by far infrared CO₂ laser stimuli (with fixed individual intensities determined at screening; mean laser intensity applied in n = 25 subjects at about 110 mJ per stimulus, with random interstimuli intervals of 4–8 s, and stepwise changes to another location of stimulation by about 3 mm) to normal, hyperalgesic UVB- and capsaicin-irritated skin – was objectively and quantitatively assessed by measuring the PtP amplitudes of the N2 and P2 evoked potential (EP) components, assessed from vertex EEG recordings (Figure 1).

EP signals were automatically obtained via programmable bio-amplifiers by online real-time averaging of 12 artefact-free, Gaussian phase-free filtered vertex EEG sections (EEG leads vertex/Cz vs. right mastoid/C3r) – after automatic rejection of blinks, facial electromyogram influences of EMG activity and EEG baseline drifts; filter setting 0.15–30 Hz), sampled with a digitization rate of 512 Hz, following laser stimuli of 60 ms duration each. The antinociceptive/antihyperalgesic effects of study medications exist in case of reductions in the resulting EP signal amplitudes vs. placebo [16].

Figure 1
Principal N2 and P2 components of laser-evoked potentials with a typical overlay of analgesic vs. placebo waveforms

Thermonociceptive perception was also assessed subjectively immediately after each LEP session, using an electronic 100 mm VAS on a personal tablet computer. Throughout the sessions, in order to avoid any external noise disturbances, to increase and stabilize subjects’ vigilance and to distract them from pain stimulation and pain sensation expectancy, subjects were exposed to ‘white noise’ via earphones (with a sound pressure of 85 dBA) and had to carry out a continuous pursuit tracking task on a computer screen.

Safety and compliance assessments

Routine safety and compliance assessments – including clinical laboratory evaluations, vital signs, ECG, physical examination, urine drug screen, alcohol and CO/smoking screen and urine pregnancy test – were performed at screening.

The urine drug screen, alcohol and CO/smoking screen, urine pregnancy test and medical check (vital signs, including temperature, blood pressure and heart rate) were also conducted at the beginning of each treatment period.

Adverse events (AEs) were monitored throughout the study. All AEs were assessed with respect to their seriousness, severity, timing, duration, relation to treatment, the action taken and the outcome.

Measurement of study drug concentrations in the plasma

To assess the exposure levels of the respective treatments, two control blood samples were collected at 2 h and 4 h postdose, after completion of the scheduled LEP, VAS and safety assessments.

Following blood collection, plasma was separated and stored at −20°C pending analysis. Study drug (control) concentrations were determined using a validated liquid chromatography tandem-mass spectrometry (LC–MS/MS) method.

4 Br J Clin Pharmacol (2017) • • • •
Statistical analysis
The statistical analysis was based on a linear mixed-effects model for the analysis of repeated-measure crossover designs [20]. The model was fitted to the PtP amplitude and VAS pain score obtained after laser stimulation of normal, UVB- and capsaicin-irritated skin. The model included the classification variables treatment (celecoxib 200 mg, pregabalin 150 mg, duloxetine 60 mg, lacosamide 100 mg or placebo), medication period (1 to 5), treatment sequence (1 to 10, according to the Williams design) and baseline value (period-specific predose measurement) as fixed effects. By adding the treatment sequence as a fixed effect, a cross-level bias was avoided [21]. In a first step, exploratory statistical analyses for averaged LEP variables and VAS postlaser stimulation pain scores were performed to obtain a summary treatment effect over all session time points (see Table 1). In a further analysis, the raw values for all session time points were investigated. For all subjects, the intercept and the effects at each of the session time points (1 to 6 h p.a.) were modelled as random effects. Moreover, to allow for different time courses of effects, the interaction term for treatment by session was included in the model. The covariance structure for the random effects was unrestricted. The homogeneity assumption for the error variance within each treatment was made. This enables a more detailed exploratory consideration with regard to the different session time points (see Table 2). Owing to the exploratory nature of the study, no adjustment for multiple testing was made.

All analyses were performed using the statistical software package SAS Version 9.2 (SAS Institute, Cary, NC, USA). Data are presented as adjusted means (least square means) of averaged PtP amplitudes and averaged VAS pain scores over the 6 h postdose interval for the treatment groups, as well as adjusted treatment differences and their corresponding 95% confidence intervals (CIs).

Safety assessments were only listed and analysed descriptively.

Sample size determination
It was anticipated that a five-way crossover study performed in 25 subjects would be able to detect a treatment difference at a two-tailed significance level of 5%, with a statistical power of 80%, if the true difference in LEP were to be 2.1 μV amplitude units between the treatment groups. This was based on the assumption that the within-subject standard deviation of the response variable would be 6.5, which was estimated for the placebo group based on the pooled data of various previous studies performed at the study site.

Results
Among the 27 healthy volunteers screened at the study site, 25 were eligible (according to inclusion and exclusion criteria) and were randomized to receive single doses of analgesics (celecoxib, pregabalin, duloxetine and lacosamide) and placebo in a crossover fashion. One subject decided to withdraw his consent for personal reasons after he had received two of the five study treatments (i.e. pregabalin and lacosamide-irritated skin). The model included the classification variables treatment (celecoxib 200 mg, pregabalin 150 mg, duloxetine 60 mg, lacosamide 100 mg or placebo), medication period (1 to 5), treatment sequence (1 to 10, according to the Williams design) and baseline value (period-specific predose measurement) as fixed effects. By adding the treatment sequence as a fixed effect, a cross-level bias was avoided [21]. In a first step, exploratory statistical analyses for averaged LEP variables and VAS postlaser stimulation pain scores were performed to obtain a summary treatment effect over all session time points (see Table 1). In a further analysis, the raw values for all session time points were investigated. For all subjects, the intercept and the effects at each of the session time points (1 to 6 h p.a.) were modelled as random effects. Moreover, to allow for different time courses of effects, the interaction term for treatment by session was included in the model. The covariance structure for the random effects was unrestricted. The homogeneity assumption for the error variance within each treatment was made. This enables a more detailed exploratory consideration with regard to the different session time points (see Table 2). Owing to the exploratory nature of the study, no adjustment for multiple testing was made.

Table 1
Least square means [+ 95% confidence interval (CI)] and mean differences from placebo for averaged N2–P2 peak-to-peak (PtP) amplitudes of laser-evoked potentials (LEP) (in μV) and visual analogue scale (VAS) scores (in mm) as measured over the 6 h post administration (p.a.) period in normal, ultraviolet (UV) B-irradiated and capsaicin-irritated skin in healthy subjects treated with single oral doses of celecoxib 200 mg, pregabalin 150 mg, duloxetine 60 mg, lacosamide 100 mg or placebo

<table>
<thead>
<tr>
<th>Skin condition</th>
<th>Treatment</th>
<th>LEP PtP amplitude [μV]</th>
<th>Mean difference from placebo (95% CI)</th>
<th>VAS postlaser pain score [mm]</th>
<th>Mean difference from placebo (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal skin</td>
<td>Placebo</td>
<td>24.3 (20.7, 28.0)</td>
<td>–</td>
<td>44.8 (31.0, 58.5)</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>Celecoxib</td>
<td>24.3 (20.8, 29.1)</td>
<td>–0.1 (–1.5, 1.4)</td>
<td>41.8 (28.1, 55.5)</td>
<td>–2.9* (–5.2, –0.7)</td>
</tr>
<tr>
<td></td>
<td>Pregabalin</td>
<td>21.7 (11.0, 31.9)</td>
<td>–2.9 (–4.1, 1.2)</td>
<td>35.7 (21.9, 49.4)</td>
<td>–9.4** (–11.3, –6.9)</td>
</tr>
<tr>
<td></td>
<td>Duloxetine</td>
<td>22.6 (10.2, 25.0)</td>
<td>–1.8 (–3.2, 0.3)</td>
<td>42.5 (28.8, 56.3)</td>
<td>–2.4 (–4.5, 0.0)</td>
</tr>
<tr>
<td></td>
<td>Lacosamide</td>
<td>23.8 (20.2, 27.5)</td>
<td>–0.5 (–2.0, 1.0)</td>
<td>42.7 (28.9, 56.4)</td>
<td>–4.4 (–4.4, 0.2)</td>
</tr>
<tr>
<td>UVB-irritated skin</td>
<td>Placebo</td>
<td>30.2 (27.7, 32.7)</td>
<td>–</td>
<td>57.6 (49.1, 66.2)</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>Celecoxib</td>
<td>24.0 (21.6, 26.5)</td>
<td>–6.2 (–7.9, 4.5)</td>
<td>49.5 (41.0, 58.1)</td>
<td>–8.1** (–10.4, –5.8)</td>
</tr>
<tr>
<td></td>
<td>Pregabalin</td>
<td>26.5 (24.0, 29.0)</td>
<td>–3.7 (–5.4, 2.0)</td>
<td>48.9 (40.4, 57.5)</td>
<td>–8.7** (–11.0, –6.4)</td>
</tr>
<tr>
<td></td>
<td>Duloxetine</td>
<td>25.7 (23.2, 28.1)</td>
<td>–4.5 (–6.2, 2.9)</td>
<td>53.4 (44.9, 62.0)</td>
<td>–4.2** (–6.5, –1.9)</td>
</tr>
<tr>
<td></td>
<td>Lacosamide</td>
<td>29.1 (26.7, 31.6)</td>
<td>–1.1 (–2.8, 0.6)</td>
<td>57.0 (48.3, 65.5)</td>
<td>–0.7 (–3.0, 1.6)</td>
</tr>
<tr>
<td>Capsaicin-irritated skin</td>
<td>Placebo</td>
<td>23.4 (19.4, 27.4)</td>
<td>–</td>
<td>55.4 (40.9, 69.8)</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>Celecoxib</td>
<td>22.1 (18.1, 26.1)</td>
<td>–1.3 (–2.8, 0.2)</td>
<td>53.2 (38.8, 67.7)</td>
<td>–2.1 (–4.6, 0.3)</td>
</tr>
<tr>
<td></td>
<td>Pregabalin</td>
<td>19.6 (15.6, 23.6)</td>
<td>–3.8 (–5.3, 2.3)</td>
<td>47.8 (33.3, 62.2)</td>
<td>–7.6 (–10.0, –5.2)</td>
</tr>
<tr>
<td></td>
<td>Duloxetine</td>
<td>21.1 (17.1, 25.1)</td>
<td>–2.3 (–3.8, 0.8)</td>
<td>52.4 (37.9, 66.8)</td>
<td>–3.0 (–5.4, –0.6)</td>
</tr>
<tr>
<td></td>
<td>Lacosamide</td>
<td>23.2 (18.4, 26.3)</td>
<td>–1.1 (–2.6, 0.5)</td>
<td>51.6 (37.2, 66.1)</td>
<td>–3.7 (–6.3, –1.2)</td>
</tr>
</tbody>
</table>

Statistically significant values (for least square means and mean differences from placebo) are in bold type
*P ≤ 0.05 vs. placebo; **P ≤ 0.001 vs. placebo
Table 2

Least square means [+ standard error of the mean (SEM)] over the period 0 to 6 h post administration (p.a.) (hourly time course including baselines) for averaged N2–P2 peak-to-peak (PtP) amplitudes of laser-evoked potentials [μV] and visual analogue scale (VAS) pain scores (in mm) as measured on normal, ultraviolet (UV) B-irradiated and capsaicin-irritated skin in healthy subjects treated with single oral doses of celecoxib 200 mg, pregabalin 150 mg, duloxetine 60 mg, lacosamide 100 mg or placebo. Normal skin baseline values were used for predose measurements of both UVB-irradiated and normal skin conditions.

<table>
<thead>
<tr>
<th>Treatments</th>
<th>Predose</th>
<th>1 h p.a.</th>
<th>2 h p.a.</th>
<th>3 h p.a.</th>
<th>4 h p.a.</th>
<th>5 h p.a.</th>
<th>6 h p.a.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mean</td>
<td>SEM</td>
<td>Mean</td>
<td>SEM</td>
<td>Mean</td>
<td>SEM</td>
<td>Mean</td>
</tr>
<tr>
<td>PtP amplitude in normal skin (μV)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Placebo</td>
<td>28.3</td>
<td>2.1</td>
<td>25.7</td>
<td>2.6</td>
<td>24.2</td>
<td>2.6</td>
<td>24.1</td>
</tr>
<tr>
<td>Celecoxib 200 mg</td>
<td>25.5</td>
<td>2.3</td>
<td>26.4</td>
<td>2.6</td>
<td>24.3</td>
<td>2.6</td>
<td>23.3</td>
</tr>
<tr>
<td>Pregabalin 150 mg</td>
<td>24.9</td>
<td>2.2</td>
<td>25.0</td>
<td>2.6</td>
<td>21.2</td>
<td>2.5</td>
<td>21.0</td>
</tr>
<tr>
<td>Duloxetine 60 mg</td>
<td>25.3</td>
<td>2.4</td>
<td>25.3</td>
<td>2.6</td>
<td>23.1</td>
<td>2.5</td>
<td>22.3</td>
</tr>
<tr>
<td>Lacosamide 100 mg</td>
<td>25.8</td>
<td>2.5</td>
<td>25.8</td>
<td>2.6</td>
<td>24.0</td>
<td>2.6</td>
<td>24.9</td>
</tr>
<tr>
<td>VAS pain scores in normal skin (mm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Placebo</td>
<td>30.3</td>
<td>3.9</td>
<td>35.7</td>
<td>9.1</td>
<td>39.6</td>
<td>9.1</td>
<td>44.1</td>
</tr>
<tr>
<td>Celecoxib 200 mg</td>
<td>34.0</td>
<td>3.7</td>
<td>35.1</td>
<td>9.1</td>
<td>37.7</td>
<td>9.1</td>
<td>40.0</td>
</tr>
<tr>
<td>Pregabalin 150 mg</td>
<td>28.3</td>
<td>3.8</td>
<td>33.1</td>
<td>9.0</td>
<td>32.1</td>
<td>9.1</td>
<td>34.3</td>
</tr>
<tr>
<td>Duloxetine 60 mg</td>
<td>27.4</td>
<td>3.5</td>
<td>34.6</td>
<td>9.0</td>
<td>39.2</td>
<td>9.1</td>
<td>43.2</td>
</tr>
<tr>
<td>Lacosamide 100 mg</td>
<td>28.1</td>
<td>3.2</td>
<td>33.9</td>
<td>9.1</td>
<td>37.4</td>
<td>9.1</td>
<td>44.1</td>
</tr>
<tr>
<td>PtP amplitude in UVB-irradiated skin (μV)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Placebo</td>
<td>21.8</td>
<td>2.2</td>
<td>23.3</td>
<td>2.8</td>
<td>25.0</td>
<td>2.8</td>
<td>24.8</td>
</tr>
<tr>
<td>Celecoxib 200 mg</td>
<td>19.7</td>
<td>2.1</td>
<td>24.0</td>
<td>2.8</td>
<td>22.2</td>
<td>2.8</td>
<td>22.6</td>
</tr>
<tr>
<td>Pregabalin 150 mg</td>
<td>18.5</td>
<td>1.5</td>
<td>20.2</td>
<td>2.8</td>
<td>21.0</td>
<td>2.8</td>
<td>18.9</td>
</tr>
<tr>
<td>Duloxetine 60 mg</td>
<td>20.7</td>
<td>2.0</td>
<td>22.6</td>
<td>2.8</td>
<td>21.1</td>
<td>2.8</td>
<td>21.0</td>
</tr>
<tr>
<td>Lacosamide 100 mg</td>
<td>20.5</td>
<td>1.7</td>
<td>23.2</td>
<td>2.8</td>
<td>22.9</td>
<td>2.8</td>
<td>23.5</td>
</tr>
<tr>
<td>VAS pain scores in UVB-irradiated skin (mm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Placebo</td>
<td>44.0</td>
<td>5.5</td>
<td>49.7</td>
<td>5.3</td>
<td>56.0</td>
<td>5.4</td>
<td>61.25</td>
</tr>
<tr>
<td>Celecoxib 200 mg</td>
<td>41.1</td>
<td>5.5</td>
<td>42.7</td>
<td>5.3</td>
<td>47.9</td>
<td>5.4</td>
<td>50.53</td>
</tr>
<tr>
<td>Pregabalin 150 mg</td>
<td>40.2</td>
<td>5.5</td>
<td>42.3</td>
<td>5.3</td>
<td>47.4</td>
<td>5.4</td>
<td>49.35</td>
</tr>
<tr>
<td>Duloxetine 60 mg</td>
<td>40.3</td>
<td>5.5</td>
<td>47.1</td>
<td>5.3</td>
<td>53.1</td>
<td>5.4</td>
<td>56.85</td>
</tr>
<tr>
<td>Lacosamide 100 mg</td>
<td>43.4</td>
<td>5.5</td>
<td>50.3</td>
<td>5.3</td>
<td>56.4</td>
<td>5.4</td>
<td>59.22</td>
</tr>
<tr>
<td>PtP amplitude in capsaicin-irritated skin (μV)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Placebo</td>
<td>27.7</td>
<td>4.0</td>
<td>42.9</td>
<td>9.3</td>
<td>48.8</td>
<td>9.5</td>
<td>56.0</td>
</tr>
<tr>
<td>Celecoxib 200 mg</td>
<td>26.2</td>
<td>3.8</td>
<td>42.5</td>
<td>9.3</td>
<td>47.4</td>
<td>9.5</td>
<td>53.2</td>
</tr>
<tr>
<td>Pregabalin 150 mg</td>
<td>26.1</td>
<td>3.8</td>
<td>41.3</td>
<td>9.3</td>
<td>43.9</td>
<td>9.5</td>
<td>46.4</td>
</tr>
<tr>
<td>Duloxetine 60 mg</td>
<td>27.3</td>
<td>3.6</td>
<td>41.1</td>
<td>9.3</td>
<td>45.5</td>
<td>9.5</td>
<td>52.2</td>
</tr>
<tr>
<td>Lacosamide 100 mg</td>
<td>20.8</td>
<td>2.8</td>
<td>37.6</td>
<td>9.3</td>
<td>46.4</td>
<td>9.5</td>
<td>53.2</td>
</tr>
</tbody>
</table>

K. Schaffler et al.
Effects of placebo and single doses of analgesics on LEP (PtP amplitude) and VAS postlaser pain score in the three different skin conditions

Least square means and mean differences from placebo, and score in the three different skin conditions on LEP (PtP amplitude) and VAS postlaser pain score in UVB-inflamed/skin. Compared with placebo, single doses of duloxetine and pregabalin caused a decrease in the PtP amplitudes of LEPs in normal skin, with an effect starting between 1 h and 2 h postdose and maintained for up to at least 6 h postdose (Figure 3A and Table 2). LEP amplitudes remained unaffected by celecoxib in normal skin. No consistent effect was seen following treatment with lacosamide, although smaller PtP amplitudes were measured 5 h and 6 h after its administration. There only remain significant reductions in the averaged 6 h postdose PtP amplitudes following treatment with duloxetine (−1.7 μV; P < 0.05) and pregabalin (−2.68 μV; P < .001), when compared with placebo (Table 1).

In agreement with the obtained LEP results, treatment with pregabalin noticeably reduced the VAS score over the 6 h postdose assessment period, compared with placebo (Figure 4A and Table 2). By contrast, the effects of the other analgesics on VAS score time profiles showed little differentiation, visually, from placebo, although VAS scores following the administration of celecoxib were consistently below the values obtained in subjects treated with placebo. Overall, duloxetine and lacosamide failed to reduce the averaged 6 h postdose VAS scores significantly compared with placebo, but significance was achieved with single doses of pregabalin (−9.1 mm; P < 0.001) and celecoxib (−2.94 mm; P < 0.05) in normal skin (Table 1).

Effect of placebo and single doses of analgesics on LEP (PtP amplitude) and VAS postlaser pain scores in UVB-irradiated/inflamed skin. In contrast to lacosamide, all of the other tested analgesics caused rapid, profound and sustained reductions (up to at least 6 h postdose) in PtP amplitudes of LEPs in UVB-irradiated/inflamed skin (Figure 3B), when compared with placebo. Celecoxib induced the most pronounced mean reduction, followed by duloxetine and pregabalin. Compared with placebo, the averaged 6 h postdose PtP amplitudes were significantly reduced by treatment with celecoxib (−6.20 μV; P < 0.001), duloxetine (−4.54 μV; P < 0.001) and pregabalin (−3.72 μV; P < 0.001) (Table 1).

In line with the LEP results, VAS score profiles obtained after single doses of pregabalin, celecoxib and duloxetine were consistently lower than with placebo (Figure 4B and Table 2), although the reduction induced by duloxetine was less pronounced than for pregabalin and celecoxib. VAS score profiles resulting from treatments with placebo and lacosamide were approximately superimposable. Averaged VAS scores in UVB-irradiated/inflamed skin over the 6 h postdose assessment period were significantly decreased by pregabalin (−8.71 mm; P < 0.001), celecoxib (−8.08 mm; P < 0.001) and, to a lesser extent, by duloxetine (−4.19 mm; P < 0.001) (Table 1).
Figure 3
Time course of laser-evoked potential peak-to-peak amplitudes (in μV) from normal skin (A), ultraviolet (UV) B-irradiated skin (B) and capsaicin-irritated skin (C). Least square means from 1 h to 6 h following a single-dose drug administration (n = 24 subjects). The solid horizontal line represents the overall predose baseline.

Figure 4
Time course of visual analogue scale (VAS) postlaser pain score (in mm) from normal skin (A), ultraviolet (UV) B-irradiated skin (B) and capsaicin-irritated skin (C). Least square means from 1 h to 6 h following a single-dose drug administration (n = 24 subjects). The solid horizontal line represents the overall predose baseline.
Effect of placebo and single doses of analgesics on LEP (PtP amplitude) and VAS postlaser pain scores in capsaicin-irritated skin. PtP amplitudes of LEPs on capsaicin-irritated skin were reduced by treatment with pregabalin and duloxetine, and, to a lesser extent, by celecoxib and lacosamide, when compared with placebo (Figure 3C and Table 2). Treatment with pregabalin showed a markedly greater effect than duloxetine, although both analgesics induced pronounced decreases in PtP amplitudes, which persisted for at least 6 h postdose. This resulted in significant reductions in the averaged PtP amplitudes following treatment with pregabalin (−3.78 μV; \(P < 0.001 \)) and duloxetine (−2.32 μV; \(P < 0.05 \)), but not celecoxib (−1.28 μV; \(P = 0.099 \)) and lacosamide (−1.05 μV; \(P = 0.176 \)), when compared with placebo (Table 1).

Starting at 2–3 h postdose, and regardless of the analgesic treatment administered, the mean VAS (pain) score time courses were lower than after treatment with placebo, although the effect of pregabalin was greater (Figure 4C and Table 2). The VAS score profiles of celecoxib, duloxetine and lacosamide were almost superimposable. Averaged VAS scores in capsaicin-irritated skin over the 6 h postdose assessment period were significantly reduced by a single dose of pregabalin (−7.61 mm; \(P < 0.001 \)) and, to a much lesser, although still significant, extent, by lacosamide (−3.74 mm; \(P < 0.05 \)) and duloxetine (−2.98 mm; \(P < 0.05 \)). Celecoxib also slightly reduced the mean averaged VAS score but this failed to achieve significance (−2.14 mm; \(P = 0.085 \)) (Table 1).

Safety
There were no serious AEs in the present study. A total of 32 AEs, all treatment emergent, were reported by a total of 14 different subjects (not shown). Of these AEs, four were of moderate intensity and 28 of mild intensity. No AEs were reported in subjects under placebo or celecoxib treatment. A total of 12 subjects reported 21 AEs during the duloxetine treatment period, with nausea and drowsiness being the most frequently reported, each with a total of four occurrences, experienced by two subjects. Out of 10 AEs reported during the pregabalin treatment period, diarrhoea, nausea, tiredness and dizziness were the most frequent, each with two events, experienced by one or two subjects. Only one AE – vomiting – was reported following lacosamide administration. There were no clinically significant changes observed in vital signs.

Treatment compliance
Subjects included in the study and treated with analgesics had measurable plasma concentrations of the administered analgesics at all the scheduled time points of measurements (data not shown).

Discussion
The aim of the study was to assess the predictive validity of the LEP–algesimetry procedure further by testing the analgesic effects of four marketed analgesics from different compound classes (celecoxib, pregabalin, duloxetine, lacosamide) in different skin types (normal, UV-irradiated/inflamed, and capsaicin-irritated skin) in healthy human volunteers.

In agreement with previous findings in healthy volunteers [8–11, 15, 23], the present results showed that both the objective LEP PtP amplitude and the subjective VAS self-rating pain score increased and developed over time in subjects treated with placebo and exposed to repeated laser stimuli to UVB-irradiated and capsaicin-irritated dermatoes, but not to normal skin.

The latter suggests that a repeated laser application to normal skin – interstimulus sites are changed after each laser shot – does not induce any sensitization per se. Such a phenomenon, known as cutaneous hyperalgesia, has been shown to develop following acute thermal injuries, UV irradiation and local administration of chemicals such as menthol, camphor, mustard oil or capsaicin [7, 8, 22–27].

In general, hyperalgesia is characterized by a time-dependent increase in response to stimuli of constant intensity due to the development of inflammation/sensitization. The hyperalgesia that occurs following an acute skin exposure to UVB or capsaicin has been described as reflecting some elements close to inflammatory pain, without an alteration of central nociceptive processing and/or spinal/central sensitization in neuropathic pain, respectively [22, 24, 28].

Indeed, UVB-induced erythema (sunburn) involves the cyclooxygenase (COX) cascade and the release of a wide range of inflammatory mediators such as prostaglandins, neuromodulators and inflammatory cytokines, as described in inflammatory pain conditions [25, 29–33].

The topical application of capsaicin to healthy human volunteers causes an increase in the sensitivity of C fibres to heat stimuli [8, 13, 14], a reduction in the heat pain threshold and spontaneous burning pain, as in patients with neuropathic pain [28, 34–36].

As observed previously [9], a progressive increase in the VAS score was generally seen over the 6 h experimental period in subjects treated with placebo, regardless of the skin condition. Such a progressive, continuous increase was not seen with the LEP PtP amplitude, which showed different patterns. Although this apparent discrepancy between the objective LEP and the subjective VAS self-assessment pain score cannot be fully explained, it should be kept in mind that the LEPs only reflect components of nociceptive processing, influenced mainly by the intensity of the nociceptive stimulation, whereas the VAS pain score is a composite of pain perception, as well as of cognitive, emotional and vigilance states – that is, many potential confounding factors. For example, the augmenting effect of negative emotions on experimental pain has been already described by several research groups over the last decade [37]. Therefore, it cannot be excluded that negative emotions resulting from repeated exposure to unpleasant laboratory experimental procedures could contribute, at least in part, to the observed time-dependent increase in the VAS pain score in placebo subjects.

Among the different compounds tested in the present study, a single therapeutic oral dose of the selective COX-2 inhibitor celecoxib was most effective in reducing laser-evoked nociception in UVB-irradiated/inflamed skin, as measured by a reduction in both PtP amplitude and VAS pain score. The lack of effects of celecoxib on the PtP amplitude
and VAS pain score when the laser was applied to previous and
and capsaicin-irritated skin is in agreement with previous find-
ings showing the lack of analgesic effects of nonsteroidal
anti-inflammatory drugs (NSAIDs; e.g. ibuprofen, etoricoxib)
in experimental human pain models involving the stimula-
tion of normal and capsaicin-irritated skin [8, 9, 38, 39]. The
present results with celecoxib are in accordance with the
MoA of NSAIDs, which essentially inhibit the formation of
the inflammatory mediator prostaglandin E2 at the site of in-
flammation. These results are also in line with the proven ac-
tivity of these drugs in clinical inflammatory pain conditions
[40, 41] and in experimental human UVB pain models [8, 9,
25, 39]. The results of the present study further support the
potential usefulness of LEPs plus UVB irradiation for identify-
ing novel analgesic compounds with anti-inflammatory
properties.

In untreated and capsaicin-irritated skin, a single oral
therapeutic dose of pregabalin induced the most profound
reduction in PtP amplitude and VAS pain score, when com-
pared with other tested compounds and placebo. It also
showed a sustained effect on UVB-irradiated skin, although a
less pronounced effect on the PtP amplitude in compari-
sion with celecoxib (although a comparable effect on the
VAS score). The analgesic activity of pregabalin found here
is consistent with its reported large spectrum of clinical
analgesic activity via inhibition of nociceptive pathways,
including voltage-gated calcium channel mechanisms [42–
44], and with its previously observed antinociceptive ef-
fects in healthy human subjects in experimental pain models,
such as the intradermal capsaicin injection paradigm [45],
and for the treatment of fibromyalgia [42, 43]. Of note, al-
though pregabalin does not have anti-inflammatory activity,
there is evidence that it attenuates acute postoperative
pain [45, 46], which is consistent with its MoA in affecting
neuronal transmission in the pain processing pathways,
and also the findings obtained in UVB-irradiated skin in
the present study. Finally, in line with the proven clinical
effects of pregabalin and other anti-epileptic drugs, such as
gabapentin and carbamazepine [42, 47], pregabalin induced
a consistent antinociceptive effect on objective and
subjective readouts, following (laser) heat stimulation on
capsaicin-irritated skin, which has been hypothesized to
resemble neuropathic pain symptoms [8, 10, 28].

Duloxetine, a serotonin norepinephrine reuptake inhibi-
tor marketed for the treatment of neuropathic pain, exerts
its analgesic activities via descending inhibition in pain
signal processing by 5-hydroxytryptamine and norepineph-
rine mechanisms [48]. In line with this nonspecific mod
tary activity of the pain pathway, duloxetine administered
as a single oral dose resulted in consistent analgesic activity
in normal, UVB-irradiated and capsaicin-irritated skin types.
The observed objective and subjective effects were, in gen-
eral, less pronounced than after administration of pregabalin,
except for the mean reduction in PtP amplitude obtained
after laser stimulation of UVB-irradiated skin. Although the
numerical relevance of such a difference in the present
experimental human model cannot be easily explained after
a single dose administration in an unpowered study, the fact
that duloxetine, in contrast to pregabalin, has demonstrated
unequivocal analgesic effects in several randomized con-
trolled studies conducted in patients with osteoarthritis of

In conclusion, single oral therapeutic doses of
pregabalin, duloxetine and celecoxib, but not lacosamide,
showed rapid (between 1 h and 2 h) and sustained (>6 h)
antinociceptive/antihyperalgesic effects in this experimen-
tal, objective, quantitative human algemisic model. These
results are in line with the known clinical profiles of
these pain medications and confirm that the present exper-
imental paradigm in healthy volunteers is pharmaco-
logically sensitive for assessing analgesics with different MoAs.
The present study complements previous trials, in which a
different list of analgesics was tested in comparable exper-
imental conditions [8, 9, 22].

The previous and present results strongly suggest that
the objective LEP–algesimetry procedure may be useful
when implemented in ECD [17]. It may be used to assess
the effects of novel potential analgesics and thereby sup-
port early go/no-go decisions before they enter into long
and costly phase II trials in patients. Furthermore, this par-
adigm could be useful for determining the most promising
dose range [9, 15] and the most suitable dosing schedule,
and hence support the design of subsequent clinical
studies. Finally, as shown by the differential effects of the
tested compounds across the diverse skin types, reflecting
different pain conditions, this test paradigm could be
useful for determining the best target patient population
(e.g. nociceptive/inflammatory vs. neuropathic pain) for a
compound with a specific MoA.

In summary, the objective LEP–algesimetry procedure, in
combination with different skin types, is a promising tool
for supporting the ECD of new analgesics. Additional studies
are now warranted to assess whether the inhibitory effects of
analgesic agents with new MoAs on PtP amplitude and VAS
scores measured during ECD translate into efficacy in subse-
quently patient trials.

Competing Interests

There are no competing interests to declare.

The authors would like to thank the subjects who participated in
this clinical study. The study was sponsored by Boehringer
Ingelheim Pharma GmbH, & Co. KG, the employer of L.N., T.B.,
A.B., R.R. and J.S. None of the compounds investigated in this trial
are part of Boehringer Ingelheim’s product palette. K.S. was the
principal investigator for this study.

References

1 Southan C, Sharman JL, Benson HE, Faccenda E, Pawson AJ,
Alexander SP, et al. The IUPHAR/BPS guide to PHARMACOLOGY
in 2016: towards curated quantitative interactions between 1300
Predictivity of efficacy of four analgesics in normal, UVB-inflamed and capsaicin-irritated skin

42 Bialer M. Why are antiepileptic drugs used for nonepileptic conditions? Epilepsia 2012; 53 (Suppl. 7): 26–33.

